Ictal offset patterns and postictal dynamics-a SEEG study

Maliia MD, Barborica A, Donos C, Ciurea J, Mandruta I

11th European Congress on Epileptology, 30 June 2014, Clinical Neurophysiology Session
Materials and methods

Patient lot

<table>
<thead>
<tr>
<th>Nr</th>
<th>Sex</th>
<th>Age</th>
<th>Lateralization</th>
<th>Nr of Electrodes</th>
<th>Pathology</th>
<th>Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>17</td>
<td>L</td>
<td>11</td>
<td>Type IIb cortical dysplasia</td>
<td>Premotor dorsolateral</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>39</td>
<td>L</td>
<td>16</td>
<td>Polymicrogiria</td>
<td>Occipito-temporal basal</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>47</td>
<td>L</td>
<td>11</td>
<td>DNET</td>
<td>Temporal, middle temporal gyrus</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>40</td>
<td>L</td>
<td>11</td>
<td>Type IIb cortical dysplasia</td>
<td>Prefrontal</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>35</td>
<td>R</td>
<td>12</td>
<td>Hippocampal sclerosis</td>
<td>Temporo mesial</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>24</td>
<td>R</td>
<td>15</td>
<td>Type II cortical dysplasia</td>
<td>Rolandic</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>24</td>
<td>R</td>
<td>14</td>
<td>Type I cortical dysplasia</td>
<td>Occipito-temporal basal</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>25</td>
<td>R</td>
<td>10</td>
<td>Hippocampal sclerosis</td>
<td>Temporo mesial</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>46</td>
<td>R</td>
<td>9</td>
<td>Type I cortical dysplasia</td>
<td>Temporal pole</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>33</td>
<td>L</td>
<td>17</td>
<td>not operated on</td>
<td>Mesial Prefrontal</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>11</td>
<td>R</td>
<td>16</td>
<td>Type I cortical dysplasia</td>
<td>Superior frontal gyrus</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>35</td>
<td>R</td>
<td>14</td>
<td>DNET</td>
<td>Parietal Operculum+Insula</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>9</td>
<td>R</td>
<td>13</td>
<td>Type I cortical dysplasia</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>28</td>
<td>R</td>
<td>15</td>
<td></td>
<td>Temporal</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>46</td>
<td>L</td>
<td>12</td>
<td>Hippocampal sclerosis</td>
<td>Temporo mesial</td>
</tr>
</tbody>
</table>

45 seizures (35 F, 5 F-induces, 5-SG), 2500 contacts, 4kHz sampling rate 230 contact-recording hours
The SEEG method-definition of concepts

SOZ: first path. activity (usually LVFA+DC) before CO, <structurally coherent>

EZ: primary organisation of the ictal network;

IZ: abnormal interictal activity;

Rule: IZ⊆EZ ⊆SOZ

Ictal start: beginning of SOZ

Ictal end: end of repetitive/sharp activity or return to baseline

Pre-ictal period: Start - Ictal Period (-Stimulation Rhythm)

Post-ictal period: Stop + Ictal Period
Introduced variables

• IA (Ictal Activation) = Ictal Energy / Prelctal Energy;
• IR (Ictal Rebound) = Postictal Energy / Ictal Energy;
• IS (Ictal Supression) = Postictal Energy / Prelctal Energy;

• Relative Ictal Activation = Ictal energy contact \(x \) / \(\sum_{1}^{n} \) Ictal energy contact \(i \)

• Start/Stop order = \(\frac{t_{x} - t_{\text{min}}}{t_{\text{max}} - t_{\text{min}}} \)
Energy dynamics-by epileptogenicity
Energy dynamics-by ictal activation quartiles

All patients All Bands Quartile

- IA
- IS
- IR

Correlations:
- All: $r = 0.89$, $p < 0.01$
- IA-IR: $r = 0.74$, $p < 0.01$
Ending chronology-single case example
Ending chronology - whole lot
Postictal flatline

- **SOZ** Sensitivity: 42.34 Specificity: 99.08 Accuracy: 98.70 PPV: 0.23 NPV: 1.00
- **IZ** Sensitivity: 33.11 Specificity: 99.68 Accuracy: 97.90 **PPV: 0.74** NPV: 0.98
- **Non IZ** Sensitivity: 0.32 Specificity: 66.89 Accuracy: 2.10 PPV: 0.26 NPV: 0.02
Postictal HFOs
Postictal HFOs

- $S_v = S_c = \text{PPV} = \text{NPV}$
Ending patterns 1-focal hypersynchronous
Ending patterns 2-focal asynchronous
Ending patterns 3-secondary generalised
Case presentation

Left Hippocampus

Left Lingual Gyrus

Right Hippocampus
Thank you for your attention