Intracranial stimulation studies of brain connectivity in epilepsy

Andrei Barborica1,5, Cristi Donos1, Ioana Mindruta2,3, Mihai Malaia2, Jean Ciurea4, Alin Rasina4, Bogdan Balanescu1,4

1 Physics Department, University of Bucharest, Bucharest, Romania
2 Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
3 Neurology Department, University Emergency Hospital, Bucharest, Romania
4 Neurosurgery Department, Bagdasar-Arseni Hospital, Bucharest, Romania
5 FHC Inc, Bowdoin ME, USA

4th Conference of the National Neuroscience Society of Romania, IBRO symposium “Abnormal Brain Connectivity” Bucharest, October 17th-19th 2013
Identifying the epileptogenic network

Epileptogenic Zone: “the minimum amount of cortex that must be resected (inactivated or completely disconnected) to produce seizure freedom”

Symptomatogenic zone
“area of cortex which, when activated, produces the initial ictal symptoms or signs”

Functional deficit
“area of cortex that is not functioning normally in the interictal period”

Eloquent Cortex

Irritative zone
“area of cortex which generates interictal spikes”

Seizure Onset Zone
“area of cortex that initiates clinical seizures”

Epileptogenic lesion (if present)
“macroscopic lesion which is causative of the epileptic seizures because the lesion itself is epileptogenic (e.g. cortical dysplasia) or by secondary hyperexcitability of adjacent cortex”

Seizure Propagation

Luders et al., 2006 & Kahane, AES 2012
Table 1 Descriptions of zones and lesions of the cortex (adapted from Lüders and Awad, 1992)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epileptogenic zone</td>
<td>Region of cortex that can generate epileptic seizures. By definition, total removal or disconnection of the epileptogenic zone is necessary and sufficient for seizure-freedom</td>
</tr>
<tr>
<td>Irritative zone</td>
<td>Region of cortex that generates interictal epileptiform discharges in the EEG or MEG</td>
</tr>
<tr>
<td>Seizure onset zone</td>
<td>Region where the clinical seizures originate</td>
</tr>
<tr>
<td>Epileptogenic lesion</td>
<td>Structural lesion that is causally related to the epilepsy</td>
</tr>
<tr>
<td>Ictal symptomatogenic zone</td>
<td>Region of cortex that generates the initial seizure symptoms</td>
</tr>
<tr>
<td>Functional deficit zone</td>
<td>Region of cortex that in the interictal period is functionally abnormal, as indicated by neurological examination, neuropsychological testing and functional imaging or non-epileptiform EEG or MEG abnormalities</td>
</tr>
<tr>
<td>Eloquent cortex</td>
<td>Region of cortex that is indispensable for defined cortical functions</td>
</tr>
</tbody>
</table>
Goal - Identify the epileptogenic zone and perform functional mapping in order to:

• determine whether or not epilepsy surgery can be undertaken and to define its chances of risk and benefit
• recommend tailored resections

Example: Temporal lobe pole resection
Biomarkers of epileptogenicity

- **Inter-ictal spikes**

- **High-frequency oscillations:**
 - Ripples 80(100) - 250 Hz
 - Fast Ripples >250 Hz

- **High-frequency oscillations (HFO) - in normal brain**
 - Spontaneous ripples (100–200 Hz) are present in area CA1 of the hippocampus, as well as CA3, subiculum and the entorhinal cortex ripple frequency and sensory-evoked high-frequency oscillations (HFOs) occur in neocortex.
 - Ripples in area CA1 of stratum radiatum, and possibly neocortical HFOs, reflect inhibitory postsynaptic potentials of discharging interneurons that regulate pyramidal cell firing.
 - Hippocampal ripples and neocortical evoked HFOs are believed to play a role in sensory information processing.

Biomarkers of epileptogenicity

Pathological HFOs in epileptic brain (pHFO)

- Interictal fast ripples (250–600 Hz) are strongly associated with brain areas capable of generating spontaneous seizures.
- Ripple frequency HFOs in epileptogenic dentate gyrus and the neocortex should be considered pathological HFOs (pHFOs).
- Hippocampal pHFOs reflect bursts of population spikes arising chiefly from synchronously firing principal cells.

Interictal pHFOs as a biomarker of epilepsy

- The association between pHFOs and epileptogenicity suggest pHFOs could help localize the seizure onset zone and might identify the epileptogenic zone more accurately.
- The appearance of pHFOs after epileptogenic injury, for example status epilepticus, and before spontaneous seizures suggests pHFOs could be a biomarker of epileptogenesis in acquired epilepsy.

Interictal spikes as a biomarker of epilepsy

- Interictal spikes (IIS) represent a good spatial biomarker for the SOZ and the irritative zone.
- However, there is little evidence that IIS predict seizure frequency or severity of epilepsy.
- The functional role of IIS in epilepsy is not known, but some IIS might reduce ictal discharges.
- The presence and clustering of IIS after status epilepticus could indicate the subsequent appearance of spontaneous seizures.

Conclusion

- Interictal pHFOs reflect basic neuronal disturbances in brain areas capable of generating spontaneous seizures that could identify the epileptogenic region, determine the severity of epileptogenicity and possibly predict the development of epilepsy.

After Staba and Bragin, Biomarkers Med. 5(5), 2011
Invasive recordings and stimulation:

StereoElectroEncephaloGraphy - SEEG

- **SEEG**
 - Provides direct access to electrophysiological recordings in the seizure onset zone, when located in deep brain structures
 - Allows delineation of the epileptogenic area in 3D volume
 - Provides excellent time & space resolution
 - HFOs and spikes are well evidenced

- **Direct Electric Stimulation (DES)**
 - Uses different stimulation protocols to map epileptogenic brain connectivity
 - Functional mapping of eloquent cortex
SEEG + DES

Each zone has specific EEG markers
- during spontaneous activity - ictal or inter-ictal
- as a response to stimulation

Analysis of the electrophysiological responses to DES:
"Its major advantage is that it covers the full spectrum of events (spikes, ripples and fast ripples) that can be used to delineate the epileptogenic cortex without depending on their spontaneous occurrence and the occurrence of seizures."
- van 't Klooster et al, 2011
Imaging the Seizure Onset Zone

- MRI – shows anatomical data based on probing the response of protons (H+) in the water using variable magnetic fields applied in various sequences and radiofrequency signals.

- DES – shows functional connectivity based on electrophysiological responses to electrical stimulation, imaging the epileptogenic areas.
Our Aim

- To combine stereotactic information regarding each electrode’s position within the brain with measurements of epileptogenicity biomarkers, to create exact 3D activation and connectivity maps for each patient.
Subjects and Methods

- 13 patients with drug-resistant epilepsy
- 8-17 SEEG electrodes stereotactically implanted
- Data recorded using
 - 64 channels amplifier
 - Sampling rate 4096 Hz
 - allows visualization of High-Frequency Oscillations (HFO) with f>100 Hz
- Stimulation: Programmable stimulator (Guideline LP+, FHC Inc)

A - Amygdala; B - Anterior Hippocampus;
C - Posterior Hippocampus;
E - Entorhinal Cortex; U - Superior Temporal Gyrus;
D - Retrosplenial cortex; S - Suprasylvian;
I - Temporal Pole; O - Orbitofrontal; F - Fusiform gyrus;
R - Rolandic Operculum; W - Wernicke;
Subjects and Methods

Stimulation protocols:

• **Standard**
 - 1 Hz: biphasic, 3 ms pulse width, 40 s stimulation length, 0.5 - 3 mA current range - used for mapping brain connectivity (Enatsu et al., 2012, David et al, 2013)
 - 50 Hz functional mapping: biphasic, 1 ms pulse width, 5 s stimulation length, 0.5 - 3 mA current range (Kahane et al, 2004)

• **SPES:**
 - biphasic, 3 ms pulse width, 15 s interpulse interval, currents in the 0-5mA range (0.25mA step)

Presurgical video-EEG monitoring:

• 5-14 days
SPES

C1 (Post Hc) response to E1-E2 (Entorhinal Cortex) stimulation

Raw signal

SEEG electrode implantation pattern in patient 3. A - Amygdala; B – Anterior Hippocampus; C – Posterior Hippocampus; E – Entorhinal Cortex; U – Superior Temporal Gyrus; D - Retrosplenial cortex; S - Suprasylvian; I – Temporal Pole; O - Orbitofrontal; F - Fusiform gyrus; R – Rolandic Operculum; W – Wernicke.

a) EEG traces; (b) - stimulus response curve; (c) – Time-frequency map (Morlet)
SPES

C1 (Post Hc) **HFOs** ~150 Hz evoked by E1-E2 (Entorhinal Cortex) stimulation

SEEG electrode implantation pattern in patient 3. A - Amygdala; B – Anterior Hippocampus; C – Posterior hippocampus; E – Entorhinal Cortex; U – Superior Temporal Gyrus; D - Retrosplenial cortex; S - Suprasylvian; I – Temporal Pole; O - Orbitofrontal; F - Fusiform gyrus; R – Rolandic Operculum; W – Wernicke.

a) EEG filtered in the 100-250 Hz range; (b) - stimulus response curve; (c) – Time-frequency map (Morlet)
Delayed Responses: D01 (Retrosplenial Cortex) evoked by stimulating contacts B03-B04 (Anterior Hippocampus)

SEEG electrode implantation pattern in patient 3. A - Amygdala; B – Anterior Hippocampus; C – Posterior Hippocampus; E – Entorhinal Cortex; U – Superior Temporal Gyrus; D - Retrosplenial cortex; S - Suprasylvian; I – Temporal Pole; O - Orbitofrontal; F - Fusiform gyrus; R – Rolandic Operculum; W – Wernicke.

a) Raw EEG traces; (b) - stimulus response curve; (c) – Time-frequency map (Morlet)
Sensitivity, specificity and predictive value of the responses for EZ delineation

- **Sensitivity**

 - Sens = \(\frac{\text{positive channels within SOZ}}{\text{positive channels within SOZ} + \text{negative channels within SOZ}} \times 100\),

 or

 - Sens = \(\frac{\text{positive channels within SOZ}}{\text{channels within SOZ}} \times 100\)

- **Specificity**

 - Spec = \(\frac{\text{negative channels outside SOZ}}{\text{negative channels outside SOZ} + \text{positive channels outside SOZ}} \times 100\),

 or

 - Spec = \(\frac{\text{negative channels outside SOZ}}{\text{channels outside SOZ}} \times 100\)

- **Accuracy**

 - Acc = \(\frac{\text{positive channels within SOZ} + \text{negative channels outside SOZ}}{\text{total channels}} \times 100\),

- PPVel is defined as

 - number of positive electrodes within SOZ / number of positive electrodes

- NPVel is defined as

 - number of negative electrodes within SOZ / number of negative electrodes

Andrade-Valenca, Dubeau, Mari, Zelmann, Gotman, Neurology 2011
Results (continued)

Pat 10 (BF): M, 47y, DNET, Left Middle Temp. Gyr. (T2)

SEEG:
9 electrodes
95 contacts

A’ - Amygdala; B’ – Anterior Hippocampus; C’ – Posterior Hippocampus; U’ – Superior Temporal Gyrus;
L – Middle Temporal Gyrus (Lesion); D’ – Posterior to Lesion; F’ - Fusiform gyrus; R’ – Rolandic Operculum;
W’ – Wernicke;
Spontaneous Seizure
Spontaneous Seizure
Results

- SPES Delayed Response Map

Patient 10

BF: M, 47y, DNET, MTG

SEEG:
9 electrodes
95 contacts

A' - Amygdala; B' – Anterior Hippocampus; C’ – Posterior Hippocampus; U’ – Superior Temporal Gyrus; L – Middle Temporal Gyrus (Lesion); D’ - Retrosplenial cortex; F’ - Fusiform gyrus; R’ – Rolandoic Operculum; W’ – Wernicke;
Delayed Responses Map

Pat 10 (BF): M, 47y, DNET, Left Middle Temp. Gyr. (T2)

Maximum Intensity Projection (MIP)
Results

- SPES HFO Map

Patient 10

BF: M, 47y, DNET, MTG

SEEG:
9 electrodes
95 contacts

A’ - Amygdala; B’ – Anterior Hippocampus; C’ – Posterior Hippocampus; U’ – Superior Temporal Gyrus; L – Middle Temporal Gyrus (Lesion); D’ - Retrosplenial cortex; F’ - Fusiform gyrus; R’ – Rolandic Operculum; W’ – Wernicke;
HFO Map

Pat 10 (BF): M, 47y, DNET, Left Middle Temp. Gyr. (T2)

Maximum Intensity Projection (MIP)
Results (continued)

Pat 12 (BM): F, 40y, Focal Dysplasia, Frontal - Premotor

SEEG:
11 electrodes
146 contacts

Lesion
Results

- SPES Delayed Response Map

Patient 12
F, 40y, Focal Dysplasia Frontal Lobe

Lesion
Delayed Responses Map
Pat 12 (BM): F, 40y, Focal Dysplasia, Frontal - Premotor

Maximum Intensity Projection (MIP)
Results

- SPES HFO Map

Patient 12
HFO Map

Pat 12 (BM): F, 40y, Focal Dysplasia, Frontal - Premotor

Maximum Intensity Projection (MIP)
Results

- SPES Delayed Response Map

Patient 13
DD, 32y, MRI Negative
Results

- SPES HFO Map

Patient 13
Conclusions

- Intracranial Single Pulse Electrical Stimulation (SPES) helps in highlighting brain connectivity and identifying the epileptogenic network, while reducing the reliance on spontaneous activity.

- Evaluation of delayed response curves as well as oscillations in various frequency bands provide valuable complementary information to recording spontaneous activity.

- Exact 3D activation maps provide connectivity information, helping in delineating the epileptogenic zone, for tailored resections for each patient.
Thank You!

Funding:
UEFISCDI PN-II-ID-PCE-2011-3-0240