What We Have Learned From Intracranial Direct Electrical Stimulation (SEEG Studies)

Cristi Donos1, Andrei Barborica1,5, Ioana Mindruta2,3, Jean Ciurea4, Alin Rasina4, Bogdan Balanescu1,4

1 Physics Department, University of Bucharest, Bucharest, Romania
2 Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
3 Neurology Department, University Emergency Hospital, Bucharest, Romania
4 Neurosurgery Department, Bagdasar-Arseni Hospital, Bucharest, Romania
5 FHC Inc, Bowdoin ME, USA

The Symposium on “Therapeutic options in pharmacoeresistant epilepsy”
Bucharest, 7th-9th of March 2013
Identifying the epileptogenic network

Epileptogenic Zone:
“the minimum amount of cortex that must be resected (inactivated or completely disconnected) to produce seizure freedom”
Luders et al., 2006

Symptomatogenic zone
“area of cortex which, when activated, produces the initial ictal symptoms or signs”

Functional deficit
“area of cortex that is not functioning normally in the interictal period”

Eloquent Cortex

Irritative zone
“area of cortex which generates interictal spikes”

Seizure Onset Zone
“area of cortex that initiates clinical seizures”

Epileptogenic lesion (if present)
“macroscopic lesion which is causative of the epileptic seizures because the lesion itself is epileptogenic (e.g. cortical dysplasia) or by secondary hyperexcitability of adjacent cortex”

Seizure Propagation

After Luders et al 2006 & Kahane, AES 2012
StereoElectroEncephaloGraphy

- **SEEG**
 - Provides direct access to electrophysiological recordings in the seizure onset zone, when located in deep brain structures
 - Allows delineation of the epileptogenic area in 3D volume
 - Provides excellent time & space resolution

- **Direct Electric Stimulation (DES)**
 - Uses different stimulation protocols to map epileptogenicity and brain connectivity
 - Functional mapping of eloquent cortex
SEEG + DES

Each zone has specific EEG markers
- during spontaneous activity - ictal or inter-ictal
- as a response to stimulation

Analysis of the electrophysiological responses to DES:
"Its major advantage is that it covers the full spectrum of events (spikes, ripples and fast ripples) that can be used to delineate the epileptogenic cortex without depending on their spontaneous occurrence and the occurrence of seizures."
- van ’t Klooster et al, 2011

- Symptomatogenic zone
 - Auras

- Eloquent Cortex
 - Clinical Symptoms, Functional Deficit (or enh.!!)

- Irritative zone
 - Afterdischarges, Delayed SPES Responses, HFO’s

- Functional deficit
 - Low responses

- Seizure Onset Zone
 - Afterdischarges, Seizures, Delayed SPES Responses, HFO’s

- Epileptogenic lesion (if present)
 - No responses (hypoexcitability)
 - SOZ-Like responses (hyperexcitability)
Imaging the Seizure Onset Zone

- MRI – shows anatomical data based on probing the response of protons (H+) in the water using variable magnetic fields applied in various sequences and radiofrequency signals.

- DES – could show functional data – electrophysiological responses – to electrical stimulation, imaging the epileptogenic areas.
DES Protocols

- Repetitive low- (1Hz) and high-frequency (50 Hz) stimulation
- Single Pulse Electric Stimulation (SPES)
 - Intracranial electrodes, Monophasic pulse, 0.3 - 3ms pulse width, 5-30 s interpulse interval, up to 8mA currents
 - Early Responses (ER) and sometimes Delayed Responses (DR)
 - DR are a marker specific to seizure onset zone - SOZ (2002, Valentin et. al)
- Subdural grid electrodes, similar stimulation protocol
 - Similar results (2009, Flanagan et al.)
DES Protocols

- **SPES**
 - Grid electrodes, monophasic square wave, 0.3 ms pulse width, 1 s interpulse interval, 1 – 10mA currents

 Results:
 - Response amplitude varies with current amplitude (2010, Iwasaki et. al)

- Grid electrodes, biphasic pulse, 0.3 ms pulse width, 1 s interpulse interval, 1 – 15mA currents

 Results:
 - Response amplitude varies with current amplitude (2012, Enatsu et. al)
Subjects and Methods

Subjects:
- 4 patients with refractory epilepsy
- Stimulation done during presurgical evaluation

Equipment used:
- Nicolet wireless 64-channel amplifier
- Programmable stimulator (Guideline LP+, FHC Inc)
Methodology

- **SEEG electrodes**
- **Data recorded using**
 - 64 channels
 - Sampling rate 4096 Hz
 - allows visualization of High-Frequency Oscillations (HFO) with f>100 Hz

A - Amygdala; B – Anterior Hippocampus;
C – Posterior Hippocampus;
E – Entorhinal Cortex; U – Superior Temporal Gyrus;
D - Retrosplenial cortex; S - Suprasylvian;
I – Temporal Pole; O - Orbitofrontal; F - Fusiform gyrus;
R – Rolandoic Operculum; W – Wernicke;
Methods

Stimulation protocols:

• 1 Hz: biphasic, 3 ms pulse width, 40 s stimulation length, 0.5 - 3 mA current range

• 50 Hz functional mapping: biphasic, 1 ms pulse width, 5 s stimulation length, 0.5 - 3 mA current range

• SPES: monophasic & biphasic, 3 ms pulse width, 15 s interpulse interval, currents in the 0-5mA range (0.25mA step)

• Paired Pulse (PP): biphasic, 3 ms pulse width, 10-200ms pair delay, 1 mA current

• Variable Pulse Width (VPDES): biphasic, 0.25 – 3ms pulse width (0.25ms step), 15 s interpulse interval, 1 mA current
Methods

SPES
- Biphasic, 3 ms pulse width, 15 s inter-pulse interval,
- Variable amplitude in the 0-5 mA range (0.25 mA step)
- Pseudo-random sequence for a total of 5 min to factor out time

- Peri-stimulus response: early, delayed, HFO’s
- Stimulus response-curves
1 Hz Stimulation

- Common practice
- Used for mapping brain connectivity (electric responses) (2012, Enatsu et al.)
- Sometimes a seizure can occur: E1-E2 – Entorhinal Cortex stimulated (see attached video)
50 Hz Stimulation

- Common practice
- Used for functional mapping (clinical responses)
- Can produce auras and seizures
- Other clinical response: muscle contractions, auditory / visual / olfactory hallucinations, verbal arrest, etc

- Case study: (see attached video)
 - Wernicke stimulation causes verbal arrest
 - Entorhinal Cortex stimulation causes aura during stimulation
 - 1 mA – a mild aura
 - 2 mA – a stronger aura like the one before seizure
High frequency oscillations (HFO, 100-250Hz) – strong marker for epileptogenic area. (2012 Enatsu et al.; 2012 da Silva et al.)

A4 – Amygdala

C2 – Posterior Hippocampus

E1-E2 – Entorhinal Cortex
SPES

E1-E2 – Entorhinal Cortex

C2 – Posterior Hippocampus

EEG C2-REF Unfiltered data

RMS 10-100 ms post stimulus

Pulse current Values (mA)

EEG signal

Time (ms)
SPES – HFO (100-250 Hz)

E1-E2 – Entorhinal Cortex

C2 – Posterior Hippocampus
Fast Ripples (FR, >250Hz) are even more specific to the epileptogenic area than HFOs (2012 Cho et al.)
Seizure Onset Zone
- A - Amygdala;
- B – Anterior Hippocampus;
- C – Posterior Hippocampus;

Irritative zone:
- E – Entorhinal Cortex;

Functional Deficit:
- I – Temporal Pole;
- F - Fusiform gyrus;

Eloquent Cortex:
- R – Rolandic Operculum;
- W – Wernicke;

No responses:
- O - Orbitofrontal;
- U – Superior Temporal Gyrus;
Our data showed that brain responses are similar for both monophasic and biphasic SPES (results are shown on a future slide).
VPDES

B1 B2 – Hippocampus
VPDES 1.5mA

A4 – Amygdala
C2 – Posterior Hippocampus
SPES vs. VPDES

Injected current or “charge per phase” is the most relevant parameter in SPES

A7 – Amygdala

C2 – Posterior Hippocampus
SPES vs. VPDES

Injected current or “charge per phase” is the most relevant parameter in SPES.

Graphs:

EEG B6-REF Unfiltered data

- **B5 – Hippocampus**

EEG B5-REF Unfiltered data

- **B6 – Hippocampus**
Conclusions

• **Intracranial Direct Electric Stimulation (iDES)** helps in delineating the epileptogenic network.

• **Evaluation of stimulus-response curves as well as oscillations in various frequency bands triggered by iDES** provide valuable complementary information to recording spontaneous activity.

• **The most relevant parameter in SPES** is the injected current (“charge per phase”).
Thank You!

Funding:
UEFISCDI PN-II-ID-PCE-2011-3-0240